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SUMMARY

Some problems pertaining to a random walk with absorbing barriers are
dealt with; the time between any two transitions i.e. between a shift in
position, being a random variable whose distribution depends on the .
direction of the movement. Probabilily of position at time ¢ before absorp-
tion, probability of ultimate absorption at a barrier conditioned on the
starting position are obtained explicitly. The probability distribution of the
duration of the walk has also been discussed. The problem is motivated
by questions pertaining to growth of a cancer tumor and multigene
evolutior.

Introduction and Basic Symbols

Consider a random walk (¢, Z(t)), in continuous time f, and defined by

N(y)
Zl)= % X, t>0
k=0

Z(0) = X,, initial position, let it be at i. N(f) denotes the tofal number
of movements undergone during (0, ) and {x;, k > 0} is a sequence of
mutually independent, 1dent1cally distributed random variable and for

E>0

Xe==+1
with _
PiXi = +1) =p, Pr(Xy = —1) = g(= 1~ p)
Fork = b, the distribution is arbitrary. Let 0, be the time between the

\
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(k — 1)th movement and the kth movement. 0% i.e. k¥ >» 1 with 6, = 0,

are random variables and are assumed to be independently distributed and

the distribution functions depend on the direction of the movement i.c.

when the shift from the present position is to the right or to the left
{ neighbouring pesition,

Let

Fr_1,1(t) = F,(1), if the movement is to the right
= F,(t) otherwise.

‘The random walk defined above may also be called as Semi-Markov
Random Walk (S.M.R,W.) This random walk is studied in the presence
of absorbing barriers placed at “6” and ““a”, the position being determined
by considering a fixed frame of reference. Thus, the movement of the walk
is restricted to the set of integers

{-b,-b+1,...,—-,0,1,...,a=1,a}

which is also called the state space of the process. Some problems like the
probability of the position of the Walk at time ¢ before absorption, prob-
ability of ultimate.absorption at a barrier and the probability distribution
of the duration of the walk are studied, .

» - Asstated by Beyer and Waterman [1] the walk with absorbing barriers
can model the growth_of a cancer tumor and multigene evolution. Thus
the explicit results obtained for the S.M.R.W. with absorbing barriers are

- useful.

" Further in the notation of Pyke [5] and [6], Q;;(z) i.e. the probability
that after makm‘7 a transition into state i, the process makes next transi-

tion into state j, in an amount of time less than or equal to ¢, is given by *

PR ifj =i+ 1
Qi;(1) =5 qF() ifj=i—1
o’ Otherwise

and

mm;§m®=gam+qmm

which gives the probability of transition from position i to any of the
possible positions in one step.

Further suppose that the Laplace-Stieltjes Transform (L.-S.T.) of the
various functions are obtained by their corresponding small letters, say

-gij(8), f5(s), hi(s) respectively are L.-S.T. of Qi;(t), Ek(t) and Hi(t).

. , '
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2. Probability of Position at Time ¢ before Absorption

Let P;;(¢, n) be the probability that the walk is at position j at time t

-in n transitions before absorption occurs given that the walk started at

position i. Also suppose P;;(t) is the probability that the position at time
t is j before absorption occurs given that the mmal position was i.
Thus,

P{j(t) = % Pij(t, n)
, n=0

For '—b <ij <a by relating the position of the walker at the nth transi-
tion with its possible positions at the (# — 1) th transition, i being the
number of transitions in time ¢, we have

Pij(f, n) = Pi:j—l(tg n— l) * 6]'——19.i(t) + P'i,j+1(t, n— l) * ej'+11]'(t)
forn >0 2.1)

Pult, 0) = 8i(1 — H(1) | 2.2)

Where 3; is a Kronecker delta and « stands for convolutxon here.
The appropriate boundary conditions are

P,i(t,n) = 0 = Pq,t, n) fori > 0 and b <i<a . (2.3)

Equatlons (2 1) to (2.3) yield

. ,
Pij(t) = 8;(1 — Hitt)) + z | Pt — =) dbg;(x) 24
k=j—1,j+10 i
! with
Poyj(t) =0 = Pg;(f)fort>0and —b <j < a (2.5)

Substituting Q,;(¢) and H;(¢) and then on takmg L.-S.T. with respect to ¢,
we have

' pu(s) = 8ij(1 — pfi(s) — qfa(s)) + PA(S) Pisj=1(s) + qfols) Pt;j+1§-;)6)

with
p—b’i(s) =0 = pa,j(S) 2.7

: Alternatively; these can be written in the vector form as

pAS) = (1 — BAi(s) — 9£4(6) €5 + PA() Bia(9) + afuls) Brals) (2.8)
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with
p-3(s) = 0 = pa(s) , (2.9)

The vectors are column vectors. Further e; denotes a unit column vector
whose jth element is one and all other elements zero. The equations (2.8)
can be written as '

(1 — pfi(s) E- — qfuls) E) ps(s) = (1 — PAA(S) — afu(s)) e

where E is the difference operator. A particular solution of the difference
equation is given by :

b0 = (= 2AE — i) S > () BAE @A)

* Cax~ntj
where as the ith element of p;(s) is
n
. { n » — .
pis) = (1 = BA() — 4£l8) > (—*’5‘——’)
: =i | =f ] +2, <.
TN
X (pfis) * (afals) * _ (2.10)

Case (i) : i >J
Putting r = (# + j — i)/2 in equation (2.10), we get

[s-

pe) = G = — s > (U F T wer e

r=0
where A(s) = pafils) fuls) - - e
Using the identify
S (¢t ze o BT
where
=21 _l -1
Z = xB ’ l Z l = l BB ‘
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we have

(x(s)) =+

2ii(s) = (1- ~ pfi(8) — g £:(s)) (‘Ifa(s)‘_}' x(s) + 2

where

() B(s)
) = 24 240

and
a(s) B(s) = 1 £ (1 — 4d4(s)H-
Case (i) 11 < j -

Putting F = (n — j 4 1)/2 in equation (2.10) and by using the .identify
(2.13) similarly, we have ‘ :
Pifs) = (1 — pfi(s) — a/fals)) (Bfi(s)=* X()Y -4/(x(s) + 2) '(2.15)

The general solution of the equation (2.6) is

2 = €0 - G2+ e ) 4 (1~ A9

x(s))(i~1+1

- qu(S)) (qj;(s))“’- Lm , fori >] ' (2.16) _

= ) Dy g LB

(a7 Cafi
—af) @Oy ST i<, e

Using the boundary conditions (2.7), we get ‘
Wy X9 (L= phi(s) — g £ils) .
0" GO )0 50 — e e X (PAO)
(g 12(5))% « B72(5) + (x(8))** — (gfu(9))f + 20 + BY(s) -
(*(s))*+4]- ‘ (2.18)
@ X8 (1= pfi(s) — qfils)) '
GO I — ) By ¥
[pf2(s)=* - Qafils))® « as) - (x(s)** — (gfuls))*
- o £ 270« w(s) (x(s)oH] @19
This result is corresponding to the result (72), in Cox and Miller ((2),

pp. 54), concerning classical Random Walk. We verify that, if f;(s) =
e~* = f,(s), on inversion we get the result of the Classical Random Walk

2.14) )

AN
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3. Probability of Abserption

Let , ’ ,
ki (i, ) dt = pr [the walk -is at barrier ‘4’ for the first time during
(t t + di); N(t) = n | Z(0) = i]

and k;,(t) dt = p, [the walk is at barrier ‘a’ for the first time during
(t,t+d)y|z(0) =i - .

= 3 kit n)dt el 3
n=0 : : T~
Also
ki,o(t, 0) = 0,for =b<i<a -]l ‘
k—bsa(t’ n) = 0’ n > 0
kolt0) =3() r .
ka,a(t, n) =0,n > 1 J
Where 8(¢) is Dirac function. For —b < i < a, we have
. t : .
ki,“(t’ n) = g ki+1:a(t — T, - 1) pf(l)('t')d'l'
t - .
e LA (3.3)

Where f((¢) and f(®)(z) are probability density functions (p.d.fs.) corres-
ponding to the cummulative distribution functions (c. d. fs.) Fi(f) and
_ Fy(t) respectively. ' ' '
Summing over 7 and then taking Laplace Transform (L. T.) with respect
to ¢ on both the sides, we get for —b <i <4 :

Ka(s) = Ktr1a(s) + BFR(S) + kf-p,0ls) * 4f206), (3.4)

where kla(s), £*(s) and f3(s) are respectively L. T. of kea(t), f®(t) and
f@(¢). The appropriate boundary conditions are "

Kasa(s) = 1, kZpa(s) = 0 : ' : ' (3.5)

The general solution of (3.4) can easily be obtained as

Zi(s) — Zi(s) ' | (3.6)

K;sa(s) = Z30(s) — Z&(s)
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where

Zy(s), Zals) = 11 & (1 — 4 B(s))12]/2pf2(s)

7

and

B(s) = pafy(s) /2(s)

Similarily, we have

/

L Z59(s) Z3Hls) — ZPHs) Zgs)

Z%s) — Z8°0) G7

k;'k,—-b(s)

The probability of ultimate absorption at ‘a’ starting from the position
i, can be given by

1—(q | p" o |
k:.o(0) = IT(q—l:p)—““'_’ —b<i<ap#q (3.3)

=0+da+h), b<i<ap=g

And, the probability of ultimate absorption at the barries ‘—b’ is given by

K2 (0) = (g | p)"** — (g | p)=* b <

1—(g|p)** < aandp 7 q (3.9)

b+i  a-— .
| 1 a—{—b—a-{-b' —b<Si<aandp=gq
We note that ‘
k(0) + k#,—4(0) = 1 (3.10) -

which demonstrates that the S. M. R. W. in the presence of two absorbing
barriers terminates with probabilily one.

If b = 0, the probability of absorption at zero starting from posmon
i, is given by :

(glp)> —(glp)
(¢lpr—1

[(forpsq) and 1—L(forp=4g), @G.1)

which is also the probability of Gambler’s ultimate ruin starting_with

capital ‘i’ against adversory with capital ‘a’ for the Gambler’s Ruin Prob- .

lem, Feller ([3] pp. 345). Thus, it is observed that the probability of
ultimate absorption at a barrier does not change even if transitions take
random time with any distribution. :
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4. Expected Duration of the Walk

Let f(t) denote the p.d.f. of the absorptlon time glven that the Walk
started from position i, we have

L J0) = Kisa() + ki—o(0) L @

Taking L. T. and then on substituting k¥ a(s) and k*,_(s) from equatxons
(3.6) and (3.7), we get

bti _ 7at _. 7h _ 7atd .
fHp) = A0 2;%}_§$3“ 24760 “2

where f#(s) is L. T. of f(¢) and 50 is the L. T. of the duration of the walk. '
The expected-duration of the walk is given by — f*(0) ‘and this can be
easily worked out to yield "

(b + i) (pry + qus)
qg—7p
(@ b) (pu + qua) {(1 — (q|P) "
@iy o erp7#ad)
= 3+ i)(@a— 1) (1 + ), forp=gq .

—f¥(0) =
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where py = — £*'(0) and py = — fz (0) i.e. ¢ and p, are the mean of the
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